If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(4k^2)+8=40
We move all terms to the left:
2(4k^2)+8-(40)=0
We add all the numbers together, and all the variables
24k^2-32=0
a = 24; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·24·(-32)
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{3}}{2*24}=\frac{0-32\sqrt{3}}{48} =-\frac{32\sqrt{3}}{48} =-\frac{2\sqrt{3}}{3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{3}}{2*24}=\frac{0+32\sqrt{3}}{48} =\frac{32\sqrt{3}}{48} =\frac{2\sqrt{3}}{3} $
| (d^+4)y=0 | | 7x+235=480 | | 3(3u-4=51 | | 10x(7+2)-12x=15x | | 2*(x-5)=3x+10 | | -65x^2+140x+165=0 | | 2x+42+2x-9+x=180 | | 2x+42+2x-9=180 | | (3x2)(7-2)(6+3)=(6x4) | | c+a=44 | | q-10/2=3 | | 4x-3=6-8x | | 3x/5x-5=-1/1 | | 2.2s-0.9=3.5 | | -5t^2=-1.8 | | 20x+15+50=10 | | .6x-5=-3. | | 6x+20+7x+2=180 | | 4.9t+0.3=5.6t+0.72t= | | y+16=10+7 | | y+16=2(5)+7 | | 14=4(-3g-19)+18g | | 11=2(-14+b)+7 | | -18t=-18t-5(5t-11) | | 2(w-5)+4=18 | | 14+8(u+12)=2(6u+19) | | 1-n=4(0.5n+2.5) | | 2(j-12.3)-7.6=4.8 | | -4+6y-8=-5(2y-20)+8y | | -4+-8=-5(2y-20)+8y | | -15-2(14+c)=3 | | 4+3(p-13)=7 |